设为首页 | 添加收藏 今天是:2024年12月22日 星期日
第三代半导体发展机遇与现状

2023-12-16

第三代半导体材料和技术正在加速发展,在新一代显示、5G移动通信、相控阵雷达、高效智能电网、新能源汽车、自动驾驶、工业电源、消费类电子产品等领域展示出广阔的、不可替代的应用前景,并逐渐成为人工智能、未来智联网等发展的核心关键元器件的材料基础。预计将形成万亿美元的应用市场,成为新一代制造业必争的战略要地,成为全球各国提升未来核心竞争力的重要手段和重要支撑。

什么是第三代半导体?

第三代半导体是以碳化硅SiC、氮化镓GaN为主的宽禁带半导体材料,具有高击穿电场、高饱和电子速度、高热导率、高电子密度、高迁移率、可承受大功率等特点,与前两代半导体材料相比,具备高频、耐高压、耐高温、抗辐射能力强等优越性能,在新能源车、光伏、风电、5G基站、高铁等领域有着很大应用潜力。

图:第三代半导体材料主要应用领域(来源:DeepTech

一、二、三代半导体区别

第一代半导体材料

兴起时间:二十世纪五十年代;

代表材料:硅(Si)、锗元素(Ge)半导体材料。

历史意义:第一代半导体材料引发了集成电路(IC)为核心的微电子领域迅速发展。

由于硅材料的带隙较窄、电子迁移率和击穿电场较低,Si 在光电子领域和高频高功率器件方面的应用受到诸多限制。但第一代半导体具有技术成熟度较高且具有成本优势,仍广泛应用在电子信息领域及新能源、硅光伏产业中。

第二代半导体材料

兴起时间:20世纪九十年代以来,随着移动通信的飞速发展、以光纤通信为基础的信息高速公路和互联网的兴起,以砷化镓、磷化铟为代表的第二代半导体材料开始崭露头角。

代表材料:第二代半导体材料是化合物半导体;如砷化镓(GaAs)、锑化铟(InSb);GaAsAlGaAsP;还有一些固溶体半导体,如Ge-SiGaAs-GaP;玻璃半导体(又称非晶态半导体),如非晶硅、玻璃态氧化物半导体;有机半导体,如酞菁、酞菁铜、聚丙烯腈等。

性能特点:以砷化镓为例,相比于第一代半导体,砷化镓具有高频、抗辐射、耐高温的特性,因此广泛应用在主流的商用无线通信、光通讯以及国防军工用途上

历史意义:第二代半导体材料主要用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料。因信息高速公路和互联网的兴起,还被广泛应用于卫星通讯、移动通讯、光通信和GPS导航等领域。如相比于第一代半导体,砷化镓(GaAs)能够应用在光电子领域,尤其在红外激光器和高亮度的红光二极管等方面。

21世纪开始,智能手机、新能源汽车、机器人等新兴的电子科技发展迅速,同时全球能源和环境危机突出,能源利用趋向低功耗和精细管理,传统的第一、二代半导体材料由于自身的性能限制已经无法满足科技的需求,这就呼唤需要出现新的材料来进行替代。

第三代半导体材料

起源时间:美国早在1993年就已经研制出第一支氮化镓的材料和器件,而我国最早的研究队伍——中国科学院半导体研究所在1995年也起步该方面的研究,并于2000年做出HEMT结构材料。

代表材料:第三代半导体材料主要以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带(Eg2.3eV)半导体材料。

发展现状:在5G通信、新能源汽车、光伏逆变器等应用需求的明确牵引下,目前,应用领域的头部企业已开始使用第三代半导体技术,也进一步提振了行业信心和坚定对第三代半导体技术路线的投资。

性能分析:与第一代和第二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度(>2.2eV)、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、大功率及抗辐射器件,可广泛应用在高压、高频、高温以及高可靠性等领域,包括射频通信、雷达、卫星、电源管理、汽车电子、工业电力电子等。

第三代半导体中,SiC GaN 相比较,前者相对 GaN 发展更早一些,技术成熟度也更高一些;两者有一个很大的区别是热导率,这使得在高功率应用中,SiC占据统治地位;同时由于GaN具有更高的电子迁移率,因而能够比SiC Si 具有更高的开关速度,在高频率应用领域,GaN具备优势。

总体来看,第一代半导体材料代表是硅,主要解决数据运算、存储的问题;第二代半导体材料以砷化镓为代表,它被应用到于光纤通讯,主要解决数据传输的问题;第三代宽禁带半导体材料,可以被广泛应用在各个领域,消费电子、照明、新能源汽车、导弹、卫星等,且具备众多的优良性能可突破第一、二代半导体材料的发展瓶颈,故被市场看好。

但是由于制造设备、制造工艺以及成本的劣势,多年来第三代半导体材料只是在小范围内应用,无法挑战硅基半导体的统治地位。在5G和新能源汽车等新市场需求的驱动下,第三代半导体材料有望迎来加速发展。

产业链应用与发展机遇

第三代半导体产业链分为上游原材料供应,中游第三代半导体制造和下游第三代半导体器件环节。上游原材料包括衬底和外延片;中游包括第三代版奥体设计、晶圆制造和封装测试;下游为第三代半导体器件应用,包括微波射频器件、电力电子器件和光电子器件等。中国第三代半导体行业产业链如下:

第三代半导体所处产业链的位置:

第三代半导体的机遇

因为硅基半导体的性能已无法完全满足5G和新能源汽车的需求,碳化硅和氮化镓等第三代半导体的优势被放大。

另外,制备技术的进步使得碳化硅和氮化镓器件成本不断下降,碳化硅和氮化镓的性价比优势将充分显现。初步判断,第三代半导体未来的核心增长点将集中在碳化硅和氮化镓各自占优势的领域。

一碳化硅(SiC

常被用于功率器件,适用于600V下的高压场景,广泛应用于新能源汽车、充电桩、轨道交通、光伏、风电等电力电子领域。新能源汽车以及轨道交通两个领域复合增速较快,有望成为碳化硅市场快速增长的主要驱动力。

计到2023年,碳化硅功率器件的市场规模将超过15亿美元,年复合增长率为31%

1,新能源汽车

汽车为碳化硅器件的最大终端应用市场,在新能源汽车领域,碳化硅器件主要可以应用于功率控制单元、逆变器、车载充电器等方面。碳化硅功率器件轻量化、高效率、耐高温的特性有助于有效降低新能源汽车的成本。

图表 2021年、2027年全球各细分市场导电型碳化硅功率器件市场规模

2.轨道交通

在轨道交通领域,碳化硅器件主要应用于轨交牵引变流器,能大幅提升牵引变流装置的效率,符合轨道交通绿色化、小型化、轻量化的发展趋势。

二氮化镓(GaN

侧重高频性能,广泛应用于基站、雷达、工业、消费电子领域:1.5G基站氮化镓射频器件更能有效满足5G高功率、高通信频段的要求。5G基站以及快充两个领域复合增速较快,有望成为氮化镓市场快速增长的主要驱动力。

发展规模及现状

2022年中国第三代半导体市场规模达到111.79亿元,同比增长39.2%2018年到2022年复合增长率为43%,增长速度惊人。其中2022年氮化镓(GaN)半导体市场规模达到62.58亿元,碳化硅(SiC)半导体市场规模达到43.45亿元,其他化合物半导体为5.76亿元。

预计未来,互联网与信息技术的持续进步,对半导体的需求会越来越高,预计2023年第三代半导体市场规模将达到152.15亿元,2028年市场规模将达到583.17亿元,2023年到2028年复合增长率为30.83%,随着市场的之间饱和,增速有所下降,但整体市场规模依然稳定持续增长。

从市场需求供给来看,中国第三代半导体需求远大于供给。2022年中国对第三代半导体的需求为28.16亿个,而产量只有2.66亿个,需求缺口巨大,常年进口大量第三代半导体。随着技术的进步和成熟,第三代半导体的单价逐渐降低,2022年单价为3.97元每个。预计在将来技术的完善和产品的迭代,第三代半导体单价将会持续走低。

氮化镓(GaN)主要被应用于通讯基站、功率器件等领域,功放效率高、功率密度大,因而能节省大量电能,同时减少基站体积和质量。据统计2022年中国第三代氮化镓半导体市场规模为62.58亿元,同比增长31.3%,其中无线基础、国防军工、有线宽带、卫星通信领域市场规模分别为34.26亿元、21.3亿元、1.35亿元、4.21亿元、1.46亿元,市场规模占比分别为54.75%34.04%2.16%6.73%2.33%

碳化硅(SiC)主要用于大功率高频功率器件,如汽车、工业用途等。据统计2022年中国第三代碳化硅半导体市场规模为43.45亿元,同比增长54.57%,其中汽车领域、LED及射频器件、能源领域、工业领域、电信及基础设施等领域市场份额分别为16.16亿元、16.62亿元、3.52亿元、3.15亿元、2.34亿元,市场占比份额分别为37.19%38.25%8.10%7.25%5.39%3.82%

由于第三代半导体材料及应用产业发明并实用于本世纪初年,各国的研究和水平相差不远,国内产业界和专家认为第三代半导体材料成了我们摆脱集成电路(芯片)被动局面、实现芯片技术追赶和超车的良机。

发展第三代半导体产业写入“十四五”规划,计划在2021-2025年期间,在教育、科研、开发、融资、应用等各个方面,大力支持发展第三代半导体产业,以期实现产业独立自主。

在细分产品发展趋势方面,SiC需求将会增长,GaN应用场景将进一步拓展;在技术发展趋势方面,大尺寸SiGaN外延等问题将会有所进展。

来源:先进半导体材料

扫一扫,在手机端打开当前页